Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- (-) User Facilities (28)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Isabelle Snyder
- Sergei V Kalinin
- Yongtao Liu
- Edgar Lara-Curzio
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Ying Yang
- Adam Siekmann
- Adam Willoughby
- Bruce A Pint
- Emilio Piesciorovsky
- Eric Wolfe
- Kashif Nawaz
- Michael Kirka
- Rishi Pillai
- Stephen Jesse
- Steven J Zinkle
- Subho Mukherjee
- Vincent Paquit
- Vivek Sujan
- Yanli Wang
- Yutai Kato
- Aaron Werth
- Aaron Wilson
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Riza Ekti
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Blane Fillingim
- Bogdan Dryzhakov
- Brandon Johnston
- Brian Fricke
- Brian Post
- Charles Hawkins
- Chengyun Hua
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Elizabeth Piersall
- Eve Tsybina
- Frederic Vautard
- Gabor Halasz
- Gary Hahn
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Meghan Lamm
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nidia Gallego
- Nils Stenvig
- Ondrej Dyck
- Ozgur Alaca
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Rangasayee Kannan
- Raymond Borges Hink
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Shajjad Chowdhury
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Tim Graening Seibert
- Tolga Aytug
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaobing Liu
- Yan-Ru Lin
- Yarom Polsky
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.