Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Bekki Mills
- Blane Fillingim
- Brian Post
- Christopher Ledford
- Clay Leach
- David Nuttall
- Hongbin Sun
- James Haley
- John Wenzel
- Keju An
- Mark Loguillo
- Matthew B Stone
- Nate See
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Prashant Jain
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shannon M Mahurin
- Sudarsanam Babu
- Tao Hong
- Thien D. Nguyen
- Tomonori Saito
- Venkatakrishnan Singanallur Vaidyanathan
- Victor Fanelli
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Neutron beams are used around the world to study materials for various purposes.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.