Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Ryan Dehoff
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Vincent Paquit
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Bekki Mills
- Blane Fillingim
- Brian Post
- Bruce Hannan
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Dave Willis
- David Nuttall
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- John Wenzel
- Jong K Keum
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Mina Yoon
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Polad Shikhaliev
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shannon M Mahurin
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vipin Kumar
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.