Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Michael Kirka
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Bruce Moyer
- Christopher Ledford
- Clay Leach
- David Nuttall
- Debjani Pal
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Haley
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- John F Cahill
- Josh Michener
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Mike Zach
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Venkatakrishnan Singanallur Vaidyanathan
- Vilmos Kertesz
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

The invention provides on-line analysis of droplets for mass spectrometry.