Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Lauren Heinrich
- Michael Kirka
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Haley
- Jeff Foster
- John F Cahill
- Josh Michener
- Liangyu Qian
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Bingham
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Venkatakrishnan Singanallur Vaidyanathan
- Vilmos Kertesz
- Vimal Ramanuj
- Vipin Kumar
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

The invention provides on-line analysis of droplets for mass spectrometry.