Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Chris Tyler
- Steven Guzorek
- Brian Post
- Justin West
- Ryan Dehoff
- Vipin Kumar
- David Nuttall
- Ritin Mathews
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Adam Stevens
- Brittany Rodriguez
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Jim Tobin
- Michael Kirka
- Pum Kim
- Scott Smith
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Akash Jag Prasad
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Gibson
- Calen Kimmell
- Christopher Ledford
- Clay Leach
- Craig Blue
- Emma Betters
- Erin Webb
- Evin Carter
- Georges Chahine
- Greg Corson
- Halil Tekinalp
- James Haley
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Thomas Feldhausen
- Tony L Schmitz
- Venkatakrishnan Singanallur Vaidyanathan
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.