Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Vincent Paquit
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Michael Kirka
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Alex Plotkowski
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andres Marquez Rossy
- Blane Fillingim
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Costas Tsouris
- David Nuttall
- Erin Webb
- Evin Carter
- Isha Bhandari
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.