Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Rafal Wojda
- Prasad Kandula
- Alex Plotkowski
- Michael Kirka
- Vandana Rallabandi
- Vincent Paquit
- Viswadeep Lebakula
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Annetta Burger
- Blane Fillingim
- Brian Post
- Carter Christopher
- Chance C Brown
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Daniel Adams
- David Nuttall
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- James Gaboardi
- James Haley
- Jesse McGaha
- Jessica Moehl
- Kevin Sparks
- Liz McBride
- Marcio Magri Kimpara
- Mostak Mohammad
- Omer Onar
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philipe Ambrozio Dias
- Praveen Kumar
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Subho Mukherjee
- Sudarsanam Babu
- Suman Debnath
- Taylor Hauser
- Todd Thomas
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.

The invention is related to the implementation of an bi-directional and isolated electric vehicle charger. The bidirectionality allows the electric vehicles to support the grid in case of disturbances thereby reducing the stress on the existing infrastructure.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.