Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Hongbin Sun
- Michael Kirka
- Stephen M Killough
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Christopher Ledford
- Clay Leach
- Corey Cooke
- David Nuttall
- Diana E Hun
- Ilias Belharouak
- James Haley
- Nolan Hayes
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vishaldeep Sharma
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.