Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ryan Dehoff
- Yong Chae Lim
- Ali Abouimrane
- Michael Kirka
- Peeyush Nandwana
- Rangasayee Kannan
- Ruhul Amin
- Vincent Paquit
- Zhili Feng
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Bryan Lim
- Christopher Ledford
- Clay Leach
- David L Wood III
- David Nuttall
- Georgios Polyzos
- Hongbin Sun
- James Haley
- Jaswinder Sharma
- Jian Chen
- Jiheon Jun
- Junbin Choi
- Lu Yu
- Marm Dixit
- Patxi Fernandez-Zelaia
- Philip Bingham
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- Wei Zhang
- William Peter
- Yan-Ru Lin
- Yaocai Bai
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Zhijia Du

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.