Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ryan Dehoff
- Amit K Naskar
- Jaswinder Sharma
- Alexey Serov
- Ali Abouimrane
- Logan Kearney
- Marm Dixit
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Ruhul Amin
- Vincent Paquit
- Xiang Lyu
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Ben LaRiviere
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Christopher Bowland
- Christopher Ledford
- Clay Leach
- David L Wood III
- David Nuttall
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Haley
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Lu Yu
- Meghan Lamm
- Michelle Lehmann
- Nance Ericson
- Patxi Fernandez-Zelaia
- Paul Groth
- Peeyush Nandwana
- Philip Bingham
- Pradeep Ramuhalli
- Rangasayee Kannan
- Ritu Sahore
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Sudarsanam Babu
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.