Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Michael Kirka
- Vincent Paquit
- Vipin Kumar
- Adam Stevens
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Brian Sanders
- Christopher Ledford
- Clay Leach
- Dan Coughlin
- David Nuttall
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Haley
- Jeff Foster
- Jerry Parks
- Jim Tobin
- John F Cahill
- Josh Crabtree
- Josh Michener
- Kim Sitzlar
- Liangyu Qian
- Merlin Theodore
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peeyush Nandwana
- Philip Bingham
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Steven Guzorek
- Subhabrata Saha
- Sudarsanam Babu
- Venkatakrishnan Singanallur Vaidyanathan
- Vilmos Kertesz
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).