Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Amir K Ziabari
- Michael Kirka
- Philip Bingham
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Brian Sanders
- Christopher Ledford
- Clay Leach
- David Nuttall
- Diana E Hun
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- James Haley
- Jerry Parks
- Mark M Root
- Obaid Rahman
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Vilmos Kertesz
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.