Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Peeyush Nandwana
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Kyle Kelley
- Rama K Vasudevan
- Rangasayee Kannan
- Sudarsanam Babu
- Amit Shyam
- Lauren Heinrich
- Michael Kirka
- Sergei V Kalinin
- Stephen Jesse
- Thomas Feldhausen
- Vincent Paquit
- Ying Yang
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- David Nuttall
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Haley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Roger G Miller
- Saban Hus
- Sarah Graham
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Tomas Grejtak
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Yutai Kato

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.