Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Srikanth Yoginath
- Yong Chae Lim
- Zhili Feng
- James J Nutaro
- Jian Chen
- Michael Kirka
- Peeyush Nandwana
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Vincent Paquit
- Wei Zhang
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Bryan Lim
- Christopher Ledford
- Clay Leach
- Dali Wang
- David Nuttall
- Harper Jordan
- James Haley
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Nance Ericson
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Philip Bingham
- Priyanshi Agrawal
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.