Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Lauren Heinrich
- Michael Kirka
- Thomas Feldhausen
- Vincent Paquit
- Viswadeep Lebakula
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alexandre Sorokine
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Costas Tsouris
- Daniel Adams
- David Nuttall
- Debangshu Mukherjee
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- Gs Jung
- Gyoung Gug Jang
- James Gaboardi
- James Haley
- Jesse McGaha
- Jessica Moehl
- Kevin Sparks
- Liz McBride
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Philipe Ambrozio Dias
- Radu Custelcean
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Taylor Hauser
- Todd Thomas
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Vipin Kumar
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.