Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit Shyam
- Ryan Dehoff
- Alex Plotkowski
- Alice Perrin
- James A Haynes
- Michael Kirka
- Sumit Bahl
- Vincent Paquit
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Alexandre Sorokine
- Amir K Ziabari
- Andres Marquez Rossy
- Blane Fillingim
- Brian Post
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- Clinton Stipek
- Daniel Adams
- David Nuttall
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- James Haley
- Jay Reynolds
- Jeff Brookins
- Jessica Moehl
- Jovid Rakhmonov
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Philip Bingham
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Taylor Hauser
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.