Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Adam Siekmann
- Emilio Piesciorovsky
- Mingyan Li
- Sam Hollifield
- Subho Mukherjee
- Vivek Sujan
- Aaron Werth
- Aaron Wilson
- Ali Riza Ekti
- Brian Weber
- Callie Goetz
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Isaac Sikkema
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Nils Stenvig
- Oscar Martinez
- Ozgur Alaca
- Raymond Borges Hink
- T Oesch
- Viswadeep Lebakula
- Yarom Polsky

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.