Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Beth L Armstrong
- Hongbin Sun
- Jun Qu
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- James A Haynes
- Meghan Lamm
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Alice Perrin
- Ben Lamm
- Bryan Lim
- Christopher Ledford
- David J Mitchell
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Ilias Belharouak
- James Klett
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Ruhul Amin
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thien D. Nguyen
- Tolga Aytug
- Trevor Aguirre
- Vishaldeep Sharma
- Ying Yang
- Yiyu Wang

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.

Electric vehicle drive fluids must have a high dielectric constant to avoid current leakage or even short circuits. On the other hand, lubricants should possess sufficient conductivity to allow static electricity to be released.
Ionic liquids comprising quaternary ammonium and phosphonium cations have been developed as eco-friendly lubricant additives. These additives are tailored for use in environmentally acceptable lubricants (EALs) like polyalkylene glycols, vegetable oils, and synthetic esters.