Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Hongbin Sun
- Alexey Serov
- Jaswinder Sharma
- Prashant Jain
- Xiang Lyu
- Amit K Naskar
- Annetta Burger
- Beth L Armstrong
- Carter Christopher
- Chance C Brown
- Debraj De
- Gabriel Veith
- Gautam Malviya Thakur
- Georgios Polyzos
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- James Szybist
- Jesse McGaha
- Jonathan Willocks
- Junbin Choi
- Kevin Sparks
- Khryslyn G Araño
- Liz McBride
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ritu Sahore
- Ruhul Amin
- Thien D. Nguyen
- Todd Thomas
- Todd Toops
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.