Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Hongbin Sun
- Brian Gibson
- Eddie Lopez Honorato
- Joshua Vaughan
- Luke Meyer
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexander Enders
- Alexander I Wiechert
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Post
- Calen Kimmell
- Callie Goetz
- Charles F Weber
- Chelo Chavez
- Christopher Fancher
- Christopher Hobbs
- Christopher S Blessinger
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Fred List III
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Riley Wallace
- Ritin Mathews
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Xiaohan Yang

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Current fuel used in nuclear light water reactors that generate energy for the grid use a solid form of uranium that is heated and processed to form pellets.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

An innovative system for automating the surveillance and manipulation of plant tissues using advanced machine vision and robotic tools.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.

The invention ensures post-validation calibrated physics system predictions remain within predetermined model validation domain boundaries.