Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Peeyush Nandwana
- Ahmed Hassen
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Alexey Serov
- Amit Shyam
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Rangasayee Kannan
- Steven Guzorek
- Sudarsanam Babu
- Thomas Feldhausen
- Xiang Lyu
- Yousub Lee
- Alex Plotkowski
- Amit K Naskar
- Andres Marquez Rossy
- Brittany Rodriguez
- Bruce A Pint
- Bryan Lim
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- James Szybist
- Jay Reynolds
- Jeff Brookins
- John Lindahl
- Jonathan Willocks
- Jordan Wright
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Peter Wang
- Ritu Sahore
- Ryan Dehoff
- Sana Elyas
- Steven J Zinkle
- Subhabrata Saha
- Tim Graening Seibert
- Todd Toops
- Tomas Grejtak
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The technologies provide additively manufactured thermal protection system.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.