Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Hongbin Sun
- James A Haynes
- Peter Wang
- Ryan Dehoff
- Stephen M Killough
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Bryan Maldonado Puente
- Christopher Fancher
- Corey Cooke
- Dean T Pierce
- Diana E Hun
- Gerry Knapp
- Gordon Robertson
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Nicholas Richter
- Nolan Hayes
- Peeyush Nandwana
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Thien D. Nguyen
- Vishaldeep Sharma
- William Peter
- Ying Yang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.