Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Radu Custelcean
- Chris Masuo
- Costas Tsouris
- Peter Wang
- Alex Walters
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Joseph Chapman
- Nicholas Peters
- Benjamin L Doughty
- Brian Gibson
- Gs Jung
- Hsuan-Hao Lu
- Joseph Lukens
- Joshua Vaughan
- Luke Meyer
- Muneer Alshowkan
- Nikki Thiele
- Santa Jansone-Popova
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexander I Wiechert
- Amit Shyam
- Anees Alnajjar
- Brian Post
- Brian Williams
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Gordon Robertson
- Ilja Popovs
- J.R. R Matheson
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Riley Wallace
- Ritin Mathews
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yingzhong Ma

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.