Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Umesh N MARATHE
- Amit K Naskar
- Dan Coughlin
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- David Nuttall
- Georges Chahine
- Jaswinder Sharma
- Logan Kearney
- Matt Korey
- Michael Toomey
- Nadim Hmeidat
- Nihal Kanbargi
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Tyler Smith
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Brian Post
- Brittany Rodriguez
- Cait Clarkson
- Christopher Bowland
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Holly Humphrey
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Sumit Gupta
- Tolga Aytug
- Uvinduni Premadasa
- Vera Bocharova

ORNL researchers have developed a new method for producing thermoset foam insulation with improved processing and installation outcomes.

The technologies described herein provides for the High Temperature Carbonization (HTC) in the manufacturing of carbon fibers (CF). The conventional method for HTC is based in thermal radiation and this technology uses in a liquid medium.

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

This invention demonstrates the strong potential for hybridization of CNF with natural fibers for facile drying and inclusion of the CNF into polymer matrices for high performance composites.

The widespread use of inexpensive salt hydrate-based phase change materials, or PCMs, has been prevented by a key technical challenge: phase separation, also known as incongruency, which results in the significant degradation of the materials' ability to store thermal energy o