Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Michael Kirka
- Ahmed Hassen
- Amit K Naskar
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Rangasayee Kannan
- Ryan Dehoff
- Trevor Aguirre
- Vlastimil Kunc
- Adam Stevens
- Christopher Ledford
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Steven Guzorek
- Alice Perrin
- Amir K Ziabari
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Post
- Brittany Rodriguez
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Holly Humphrey
- John Lindahl
- Jordan Wright
- Keith Carver
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Sana Elyas
- Santanu Roy
- Sarah Graham
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Gupta
- Thomas Butcher
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Uvinduni Premadasa
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Vincent Paquit
- Vipin Kumar
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The technologies provide additively manufactured thermal protection system.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.