Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- James A Haynes
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Ryan Dehoff
- Sumit Bahl
- Vincent Paquit
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Calen Kimmell
- Canhai Lai
- Christopher Bowland
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Holly Humphrey
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jovid Rakhmonov
- Nicholas Richter
- Peeyush Nandwana
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Sunyong Kwon
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Ying Yang
- Zackary Snow

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.