Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit K Naskar
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Yaosuo Xue
- Arit Das
- Benjamin L Doughty
- Christopher Bowland
- Edgar Lara-Curzio
- Fei Wang
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- Hongbin Sun
- Nate See
- Phani Ratna Vanamali Marthi
- Prashant Jain
- Rafal Wojda
- Robert E Norris Jr
- Santanu Roy
- Sreenivasa Jaldanki
- Suman Debnath
- Sumit Gupta
- Sunil Subedi
- Thien D. Nguyen
- Uvinduni Premadasa
- Vera Bocharova
- Yonghao Gui

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

The technologies described herein provides for the High Temperature Carbonization (HTC) in the manufacturing of carbon fibers (CF). The conventional method for HTC is based in thermal radiation and this technology uses in a liquid medium.