Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Yong Chae Lim
- Hongbin Sun
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Prashant Jain
- Rangasayee Kannan
- Adam Stevens
- Arit Das
- Benjamin L Doughty
- Brian Post
- Bryan Lim
- Christopher Bowland
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- Jiheon Jun
- Nate See
- Nithin Panicker
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Robert E Norris Jr
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Santanu Roy
- Sarah Graham
- Sudarsanam Babu
- Sumit Gupta
- Tomas Grejtak
- Uvinduni Premadasa
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and