Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit Shyam
- Alex Plotkowski
- Amit K Naskar
- Hongbin Sun
- James A Haynes
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Prashant Jain
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Brian Post
- Christopher Bowland
- Christopher Fancher
- Dean T Pierce
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gordon Robertson
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Nate See
- Nicholas Richter
- Nithin Panicker
- Peeyush Nandwana
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Ruhul Amin
- Santanu Roy
- Sarah Graham
- Sudarsanam Babu
- Sumit Gupta
- Sunyong Kwon
- Thien D. Nguyen
- Uvinduni Premadasa
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Ying Yang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.