Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Alexey Serov
- Beth L Armstrong
- Jaswinder Sharma
- Meghan Lamm
- Sergei V Kalinin
- Xiang Lyu
- Amit K Naskar
- Anton Ievlev
- Ben Lamm
- Bogdan Dryzhakov
- Bruce A Pint
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Toomey
- Michelle Lehmann
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Ritu Sahore
- Shajjad Chowdhury
- Stephen Jesse
- Steven J Zinkle
- Steven Randolph
- Tim Graening Seibert
- Todd Toops
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yongtao Liu
- Yutai Kato

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.