Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Ali Passian
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Alex Walters
- Brian Post
- Joseph Chapman
- Michael Kirka
- Nicholas Peters
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Hsuan-Hao Lu
- Joseph Lukens
- Joshua Vaughan
- Luke Meyer
- Muneer Alshowkan
- Peeyush Nandwana
- Philip Bingham
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Anees Alnajjar
- Annetta Burger
- Brian Williams
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Carter Christopher
- Chance C Brown
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Claire Marvinney
- Costas Tsouris
- Debraj De
- Diana E Hun
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Harper Jordan
- Isha Bhandari
- J.R. R Matheson
- James Gaboardi
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jesse McGaha
- Joel Asiamah
- Joel Dawson
- John Potter
- Kevin Sparks
- Kitty K Mccracken
- Liam White
- Liz McBride
- Mariam Kiran
- Mark M Root
- Michael Borish
- Nance Ericson
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Todd Thomas
- Tyler Smith
- Varisara Tansakul
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.