Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Alex Walters
- Amit K Naskar
- Brian Post
- Michael Kirka
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Ali Riza Ekti
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Jaswinder Sharma
- Joshua Vaughan
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Philip Bingham
- Raymond Borges Hink
- Udaya C Kalluri
- William Carter
- Aaron Werth
- Aaron Wilson
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Burak Ozpineci
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Diana E Hun
- Edgar Lara-Curzio
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Holly Humphrey
- Isaac Sikkema
- Isabelle Snyder
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Joseph Olatt
- Kitty K Mccracken
- Kunal Mondal
- Liam White
- Mahim Mathur
- Mark M Root
- Michael Borish
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Obaid Rahman
- Oluwafemi Oyedeji
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Patxi Fernandez-Zelaia
- Peter L Fuhr
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Sam Hollifield
- Santanu Roy
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Sumit Gupta
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.