Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Costas Tsouris
- Justin West
- Peter Wang
- Andrew Sutton
- Andrzej Nycz
- Michelle Kidder
- Radu Custelcean
- Ritin Mathews
- Amit K Naskar
- Blane Fillingim
- Chris Masuo
- Gyoung Gug Jang
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- David Olvera Trejo
- Gs Jung
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Michael Cordon
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- William Carter
- Yousub Lee
- Ajibola Lawal
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Arit Das
- Benjamin L Doughty
- Benjamin Manard
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charles F Weber
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Dhruba Deka
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Greg Corson
- Holly Humphrey
- Isha Bhandari
- James Klett
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Jong K Keum
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Mina Yoon
- Philip Bingham
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Sreshtha Sinha Majumdar
- Steve Bullock
- Steven Guzorek
- Sumit Gupta
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Uvinduni Premadasa
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yeonshil Park
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.