Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Brian Post
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- Hongbin Sun
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Matt Korey
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Stephen M Killough
- Subhabrata Saha
- Xianhui Zhao
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Ben Lamm
- Bryan Maldonado Puente
- Cait Clarkson
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Corey Cooke
- Daniel Rasmussen
- David J Mitchell
- Diana E Hun
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Ilias Belharouak
- Jeremy Malmstead
- Jesse Heineman
- John Holliman II
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marm Dixit
- Merlin Theodore
- Michael Kirka
- Nolan Hayes
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peter Wang
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sana Elyas
- Shajjad Chowdhury
- Sudarsanam Babu
- Thien D. Nguyen
- Thomas Feldhausen
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Vishaldeep Sharma

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).