Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steve Bullock
- Chris Tyler
- Soydan Ozcan
- Steven Guzorek
- Chris Masuo
- Corson Cramer
- Peter Wang
- Vipin Kumar
- Halil Tekinalp
- Justin West
- Meghan Lamm
- Ryan Dehoff
- Vincent Paquit
- David Nuttall
- Michael Kirka
- Peeyush Nandwana
- Ritin Mathews
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Adam Stevens
- Alex Roschli
- Alex Walters
- Beth L Armstrong
- Blane Fillingim
- Dan Coughlin
- Greg Larsen
- James Klett
- Joshua Vaughan
- Katie Copenhaver
- Luke Meyer
- Nadim Hmeidat
- Rangasayee Kannan
- Thomas Feldhausen
- Trevor Aguirre
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Christopher Ledford
- Clay Leach
- Craig Blue
- David Olvera Trejo
- Georges Chahine
- J.R. R Matheson
- Jaydeep Karandikar
- Jesse Heineman
- Jim Tobin
- John Lindahl
- Lauren Heinrich
- Matt Korey
- Philip Bingham
- Pum Kim
- Sanjita Wasti
- Scott Smith
- Segun Isaac Talabi
- Subhabrata Saha
- Udaya C Kalluri
- Xianhui Zhao
- Yousub Lee
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- Amy Elliott
- Ben Lamm
- Cait Clarkson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Diana E Hun
- Dustin Gilmer
- Emma Betters
- Erin Webb
- Evin Carter
- Fred List III
- Gabriel Veith
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- John Potter
- Jordan Wright
- Josh B Harbin
- Josh Crabtree
- Julian Charron
- Keith Carver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Mark M Root
- Marm Dixit
- Merlin Theodore
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Richard Howard
- Riley Wallace
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Shajjad Chowdhury
- Thomas Butcher
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Tony L Schmitz
- Vladimir Orlyanchik
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.