Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sam Hollifield
- Stephen M Killough
- Vincent Paquit
- Ben Lamm
- Beth L Armstrong
- Brian Weber
- Bruce A Pint
- Bryan Maldonado Puente
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Isaac Sikkema
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mary A Adkisson
- Meghan Lamm
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Shajjad Chowdhury
- Steven J Zinkle
- Tim Graening Seibert
- T Oesch
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).