Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- Yong Chae Lim
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Stephen M Killough
- Vincent Paquit
- Zhili Feng
- Adam Stevens
- Alexandre Sorokine
- Brian Post
- Bryan Lim
- Bryan Maldonado Puente
- Clinton Stipek
- Corey Cooke
- Daniel Adams
- Gina Accawi
- Gurneesh Jatana
- Jessica Moehl
- Jian Chen
- Jiheon Jun
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Peeyush Nandwana
- Peter Wang
- Philipe Ambrozio Dias
- Priyanshi Agrawal
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Sarah Graham
- Sudarsanam Babu
- Taylor Hauser
- Tomas Grejtak
- Viswadeep Lebakula
- Wei Zhang
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.