Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher

Technologies directed to an integrated on-board charger for dual motor based electric vehicle power train are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention proposes a Honeycomb-DD coupling structure that addresses the shortcomings of the conventional honeycomb coil array and gathering the advantage of DD and honeycomb designs advantages in a single design.

Wireless charging systems need to operate at high frequency, at or near resonance, to maximize power transfer distance and efficiency. High voltages appear across the inductors and capacitors. The use of discrete components reduces efficiency, increases system complexity.

Pairing hybrid neural network modeling techniques with artificial intelligence, or AI, controls has resulted in a unique hybrid system that creates a smart solution for traffic-signal timing.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

The described concept provides a predictive technology solution to increase the safety of platooning vehicles.

ORNL has developed a revolutionary system for wirelessly transferring power to electric vehicles and energy storage systems, enabling efficient, contactless charging.