Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Alexandre Sorokine
- Alex Roschli
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- James Gaboardi
- Jeremy Malmstead
- Jesse McGaha
- Jessica Moehl
- Kevin Sparks
- Kitty K Mccracken
- Liz McBride
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Philipe Ambrozio Dias
- Soydan Ozcan
- Taylor Hauser
- Todd Thomas
- Tyler Smith
- Viswadeep Lebakula
- Xianhui Zhao
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.