Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Michael Kirka
- Ryan Dehoff
- Alex Plotkowski
- Amit Shyam
- Peeyush Nandwana
- Rangasayee Kannan
- Adam Stevens
- Alice Perrin
- Christopher Ledford
- Daniel Jacobson
- James A Haynes
- Sumit Bahl
- Ying Yang
- Amir K Ziabari
- Andres Marquez Rossy
- Beth L Armstrong
- Brian Post
- Corson Cramer
- Fred List III
- Gerry Knapp
- James Klett
- Jovid Rakhmonov
- Keith Carver
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Sudarsanam Babu
- Sunyong Kwon
- Thomas Butcher
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Yukinori Yamamoto

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.