Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Radu Custelcean
- Costas Tsouris
- Josh Michener
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Benjamin L Doughty
- Gs Jung
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Nikki Thiele
- Santa Jansone-Popova
- Serena Chen
- Udaya C Kalluri
- Xiaohan Yang
- Alexander I Wiechert
- Alex Walters
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Ilja Popovs
- Jayanthi Kumar
- Jay D Huenemann
- Jennifer M Pyles
- Joanna Tannous
- Jong K Keum
- Kyle Davis
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Paul Abraham
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Yang Liu
- Yingzhong Ma

Technetium is a radioactive isotope that is a byproduct of nuclear processing; there are currently limited mechanisms to capture technetium when uranium is recycled, hindering the efficient recycling of spent nuclear fuel.

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

Direct air capture (DAC) technologies that extract carbon dioxide directly from the atmosphere are critical for mitigating effects of climate change.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Selenate and selenite oxyanions are crystallized together with sulfate anions using ligands. In this approach, we will take advantage of the tendency of these similar oxyanions to co-precipitate into crystalline solid solutions.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.