Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Amir K Ziabari
- Andrzej Nycz
- Austin L Carroll
- Diana E Hun
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Serena Chen
- Stephen M Killough
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Biruk A Feyissa
- Bryan Maldonado Puente
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Corey Cooke
- Debjani Pal
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- John Holliman II
- Kyle Davis
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Vilmos Kertesz
- William Alexander
- Yang Liu

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).