Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Annetta Burger
- Austin Carroll
- Brian Sanders
- Carter Christopher
- Chance C Brown
- Chris Masuo
- Clay Leach
- Debjani Pal
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Gerald Tuskan
- Ilenne Del Valle Kessra
- James Gaboardi
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jesse McGaha
- Joanna Tannous
- Kevin Sparks
- Kitty K Mccracken
- Kyle Davis
- Liz McBride
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Soydan Ozcan
- Todd Thomas
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Xiuling Nie
- Yang Liu
- Yasemin Kaygusuz

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.

Genetic modification of microbes that are thermophiles—ones that grow at elevated temperatures—is extremely challenging. Tools developed for E. coli, a typical host for protein production, typically do not function at elevated temperatures.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.

The invention provides a gene and methods for maintaining meiotic chromosomal architecture

An innovative system for automating the surveillance and manipulation of plant tissues using advanced machine vision and robotic tools.

An ORNL team has developed a method for screening for an immunoregulatory protein, which includes assessing the sequence of a candidate protein to determine if it is an immunoregulatory protein when at least one plasminogen-apple-nematode (PAN) domain with a consensus sequence