Filter Results
Related Organization
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Biological and Environmental Systems Science Directorate (29)
Researcher
- Adam M Guss
- Andrzej Nycz
- Josh Michener
- Chris Masuo
- Liangyu Qian
- William Carter
- Alex Roschli
- Alex Walters
- Austin L Carroll
- Biruk A Feyissa
- Brian Post
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Luke Meyer
- Serena Chen
- Soydan Ozcan
- Udaya C Kalluri
- Vilmos Kertesz
- Xianhui Zhao
- Xiaohan Yang
- Adam Stevens
- Amy Elliott
- Brian Sanders
- Cameron Adkins
- Clay Leach
- Dali Wang
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Halil Tekinalp
- Ilenne Del Valle Kessra
- Isha Bhandari
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- Joanna Tannous
- Joshua Vaughan
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Mengdawn Cheng
- Michael Borish
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sanjita Wasti
- Sarah Graham
- Sudarsanam Babu
- Tyler Smith
- Vincent Paquit
- Wei Zhang
- William Alexander
- William Peter
- Yang Liu
- Yasemin Kaygusuz
- Yukinori Yamamoto
- Zhili Feng

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.