Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- William Carter
- Alex Roschli
- Amir K Ziabari
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Philip Bingham
- Vincent Paquit
- Adam Stevens
- Alex Walters
- Amy Elliott
- Bruce Moyer
- Cameron Adkins
- Debjani Pal
- Diana E Hun
- Erin Webb
- Evin Carter
- Gina Accawi
- Gurneesh Jatana
- Isha Bhandari
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Joshua Vaughan
- Justin Griswold
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liam White
- Luke Sadergaski
- Mark M Root
- Michael Borish
- Michael Kirka
- Mike Zach
- Obaid Rahman
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Peter Wang
- Philip Boudreaux
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.