Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Isabelle Snyder
- Kyle Kelley
- Rama K Vasudevan
- Adam Siekmann
- Emilio Piesciorovsky
- Sergei V Kalinin
- Subho Mukherjee
- Vivek Sujan
- Aaron Werth
- Aaron Wilson
- Ali Riza Ekti
- Anton Ievlev
- Bogdan Dryzhakov
- Bruce Moyer
- Debjani Pal
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mike Zach
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Ozgur Alaca
- Padhraic L Mulligan
- Raymond Borges Hink
- Sandra Davern
- Stephen Jesse
- Steven Randolph
- Viswadeep Lebakula
- Yarom Polsky
- Yongtao Liu

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.