Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Andrew F May
- Anees Alnajjar
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brian Williams
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Claire Marvinney
- Craig Blue
- Daniel Rasmussen
- Debraj De
- Gautam Malviya Thakur
- Harper Jordan
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- Jesse McGaha
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Kevin Sparks
- Liz McBride
- Mariam Kiran
- Mike Zach
- Nance Ericson
- Nate See
- Nedim Cinbiz
- Prashant Jain
- Srikanth Yoginath
- Thien D. Nguyen
- Todd Thomas
- Tony Beard
- Varisara Tansakul
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.