Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Hongbin Sun
- Eddie Lopez Honorato
- Mike Zach
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Callie Goetz
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Fred List III
- Gautam Malviya Thakur
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Justin Griswold
- Keith Carver
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Matt Kurley III
- Nate See
- Nedim Cinbiz
- Nithin Panicker
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Ruhul Amin
- Sandra Davern
- Thien D. Nguyen
- Thomas Butcher
- Todd Thomas
- Tony Beard
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and