Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Andrzej Nycz
- Soydan Ozcan
- Chris Masuo
- Halil Tekinalp
- Meghan Lamm
- Ryan Dehoff
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Brian Post
- Peter Wang
- Umesh N MARATHE
- Alex Roschli
- Alex Walters
- Dan Coughlin
- Katie Copenhaver
- Michael Kirka
- Rangasayee Kannan
- Steven Guzorek
- Uday Vaidya
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Adam Stevens
- Amir K Ziabari
- Beth L Armstrong
- Brian Gibson
- Clay Leach
- David Nuttall
- Georges Chahine
- Jesse Heineman
- Joshua Vaughan
- Luke Meyer
- Matt Korey
- Mike Zach
- Nadim Hmeidat
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Tyler Smith
- Udaya C Kalluri
- William Carter
- Xianhui Zhao
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Ben Lamm
- Brad Johnson
- Brittany Rodriguez
- Bruce Moyer
- Cait Clarkson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Diana E Hun
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gautam Malviya Thakur
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Hsin Wang
- Isha Bhandari
- J.R. R Matheson
- James Gaboardi
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse McGaha
- Jim Tobin
- John Lindahl
- John Potter
- Josh Crabtree
- Justin Griswold
- Kevin Sparks
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liam White
- Liz McBride
- Luke Sadergaski
- Mark M Root
- Marm Dixit
- Michael Borish
- Nedim Cinbiz
- Obaid Rahman
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sana Elyas
- Sandra Davern
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Todd Thomas
- Tolga Aytug
- Tony Beard
- Vladimir Orlyanchik
- William Peter
- Xiaohan Yang
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).